

Data Processing Report

Shipboard Acoustic Doppler Current Profiler (75kHz) R/V Meteor III cruise MET203

Issue date: November 28, 2024

Contact

Robert Kopte (robert.kopte@ifg.uni-kiel.de)

Christian-Albrechts-Universität zu Kiel - Institute of Geosciences

German Marine Research Alliance (DAM) - Underway Research Data Project datamanagement@marine-data.de

1 Abstract

Current velocities of the upper water column along the cruise track of R/V Meteor III cruise MET203 were collected by a vessel-mounted 75 kHz RDI Ocean Surveyor ADCP.

The ADCP transducer was located at 5.0 m below the water line. The instrument was operated in narrowband mode (WM10) with a bin size of 8.00 m, a blanking distance of 4.00 m, and a total of 100 bins, covering the depth range between 17.0 m and 809.0 m.

Attitude data from the ship's motion reference unit were used by the data acquisition software VmDAS internally to convert ADCP beam velocities to geographic coordinates.

The Python toolbox OSADCP (version 2.0.0) was used for data post-processing. Single-ping data were screened for bottom signals and, where appropriate, a bottom mask was manually processed. Acoustic Interferences were identified based on outliers in the ADCP echo intensity data. Echo intensity data were cleaned accordingly and affected velocity cells were flagged to be removed prior ensemble-averaging.

The ship's velocity was calculated from position fixes obtained by the Global Navigation Satellite System (GNSS), taking into account lever arms of ADCP transducer and GNSS antenna. Accuracy of the derived water velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline.

Data processing included water track calibration of the misalignment angle (-46.4281° +/- 0.5612°) and scale factor (1.0069 +/- 0.0086) of the measured velocities. The velocity data were averaged in time using an average interval of 60 s.

Depth cells with ensemble-averaged percent-good values below 25% are marked as 'bad data'.

2 Sensor, configuration and deployment information

Sensor details			
Device	RDI Ocean Surveyor		
Frequency	75 kHz		
Transducer S/N*	2175-G		
Sensor URN	https://hdl.handle.net/10013/sensor.f9164d82-518b-447b-bc75-a8d162edf99a		
Transducer depth	5.0 m		
Configuration details			
Operating mode	narrowband mode (WM10)		
Number of cells	100		
Bin length	8.0 m		
Blanking distance	4.0 m		
Pulse length	8.0 m		
Lag	1.46 s		
Heading alignment	46.00°		
Heading bias	0.00°		
Deployment details			
Start Time	2024-08-19T12:23:00Z		
End Time	2024-09-24T01:22:00Z		
Minimum latitude	4.65°N		
Maximum latitude	15.17°N		
Minimum longitude	-59.42°E		
Maximum longitude	-22.48°E		
Minimum depth	17.00 m		
Maximum depth	809.00 m		
ADCP/GNSS positions*			
ADCP_x	-1.92 m		
ADCP_y	26.76 m		
GNSS_x	0.00 m		
GNSS_y	0.00 m		

^{*} Position of ADCP and GNSS antenna relative to the midship position. x positive/negative refers to starboard/portside and y positive/negative refers to ship's bow/ship's deck, respectively. A geometric compensation is applied to account for the different relative positions of transducer and GNSS.

3 Details

3.1 Data acquisition

ADCP raw data were acquired using the data acquistion software VmDAS by Teledyne RDI. Time-synchronous position and attitude data were provided by Kongsberg Seapath systems and added to the ADCP data stream within VmDAS. All data are provided as single-ping ensembles in binary pd0 format (see below).

3.2 Data processing

3.2.1 Processing software

For data processing, the Python-based software OSADCP (version 2.0.0) was used. It is specifically developed both for the near-real-time monitoring and for the delayed-mode processing of shipboard ADCP raw data (Kopte et al., 2024). OSADCP contains modules that include the essential processing steps of coordinate transformation, position data verification, velocity data cleaning, bottom interference detection, ensemble averaging, water-track calibration or bottom-track processing.

For the here described data set, the following OSADCP modules were employed:

- os_settings
- · os_read_enx
- os_edit_bottom
- · os_backscatter
- · os_watertrack

3.2.2 Raw data conversion

VmDAS generates three raw data formats each representing a different status of internally applied coordinate transformation and data stream merging. For the here described data set, ENX files were used for processing, which contain raw velocity data in geographic coordinates and navigation data for each ping.

The binary raw data was converted and arranged in a data structure containing both measured parameters at single-ping level and meta data. Data are checked for completeness and clock drift of the sensor PC. Navigation data are verified and checked for common problems such as the occurrence of zero/zero positions, irregularities in the time allocation such as time stops, backward time jumps, time shifts etc. Affected pings are flagged accordingly and ignored in further processing.

3.2.3 Bottom interference

ADCP single ping data were scanned for echo feedback from the ground, which introduces spurious velocites in the the affected cell range. The scanning was carried out based on inspection of the time series of the echo intensity and along-track velocity profiles to identify the bottom signal and its potential effect on the velocities near the sea bed by sidelobe interference. A line corresponding to the depth of bottom influence on the measured velocities was picked manually that was used to exclude these prior to further processing.

3.2.4 Cleaning of echo intensity data

Light acoustic interference below 40 m was removed by flagging spikes in the echo intensity data. For the identification of spikes, an echo intensity anomaly field was created by subtracting the median echo intensity profile from each intensity profile at single-ping level. Cells potentially affected by interference were determined by identifying ping-to-ping differences that either exceed or fall below +0.7 or -0.7 of the total standard deviation of ping-to-ping differences. The candidate cells were then checked if they are of single-ping duration and whether the associated intensity spikes extend over several depth cells. All cells that were identified as being affected by acoustic interference were excluded from further processing of both the velocity and echo intensity data.

For the here described data set, stronger acoustic interference was detected that required additional, more vigorous cleaning. From the distribution of the total echo intensity anomaly field, that was additionally median-filtered in time, the first and third quartile were calculated to determine the interquartile range IQR = Q3 - Q1. The heavy tails at the upper and lower ends of the distribution were then determined by $Q_3 + 0.75 \cdot IQR$ and $Q_1 - 0.75 \cdot IQR$. Values that exceed or fall below the right-sided or left-sided heavy tail were classified as outliers and were additionally excluded from further processing.

3.2.5 Water-track calibration

The ship speed was calculated based on GNSS position data taking into account lever arm information for the given setup of ADCP and GNSS sensor, ignoring pings with questionable navigation data.

A number of automated cleaning criteria were applied to the single-ping velocity data (Kopte et al., 2024).

Subsequently, single-ping data along the water column were averaged into so-called ensembles, with the velocitites being vector-averaged. Using ensemble averages reduces the spread of single-ping current estimates, increasing the precision of the measurement. For the here described data set, the chosen average interval was 60.0 seconds. Water-track calibration was applied to the ensemble-average data. It addresses two different errors (Joyce, 1989; Firing and Hummon, 2010):

- Misalignment error: A deviation of the transducer alignment with respect to the heading reference of the ship introduces a bias with its main effect being a spurious cross-track component proportional to ship speed.
- Scaling error: Small errors in the beam geometry or a non-zero trim of the transducer or ship can cause a systematic bias affecting mostly the along-track velocity component, proportional to ship speed.

The applied algorithm of the water-track calibration is described in detail in Kopte et al., 2024. Calibration results are documented in Figure 1. The final calibration values α and β were applied to the measured velocities. Subsequently, the ship velocity was substracted to obtain horizontal water velocities.

	Mean value	Standard deviation
Misalignment angle	-0.4281°	0.5612°
Scale factor	1.0069	0.0086

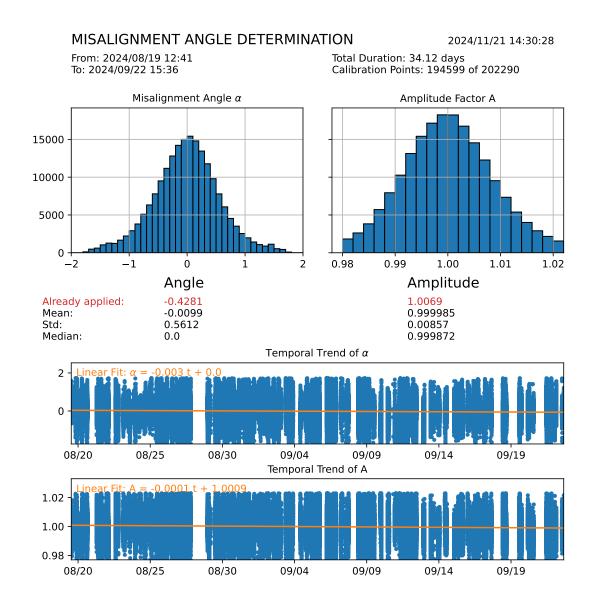


Figure 1: Top: Histograms showing results from misalignment angle (left) and scale factor (right) determination. Bottom: Temporal trend of misalignment angle (upper panel) and scale factor (lower panel).

3.2.6 Calculation of relative backscatter from ADCP echo intensity

Relative acoustic backscatter was calculated from the cleaned echo intensity data by applying a working version of the sonar equation (Mullison, 2017):

$$S_v = C + 10\log_{10}\left((T_x + 273.16)R^2\right) - L_{DBM} - P_{DBW} + 2\alpha R + 10\log_{10}\left(10^{k_c(E - E_r)/10} - 1\right)$$

where S_v is the relative backscatter, C is a constant combining several parameters specific to each instrument, T_x is the temperature measured at the transducer (°C), L_{DBM} is the $10\log_{10}$ of the transmit pulse length (m), P_{DBW} is the $10\log_{10}$ of the transmit power (W), R is the along-beam range to scatterers (m), α is the absorption coefficient of water (dB/m), k_c is the conversion factor for echo intensity (dB/counts), E is the measured echo intensity (RSSI, counts), and E_r is the measured echo intensity (RSSI, counts) in the absence of any signal (noise).

In this calculation, the noise floor E_r was neglected, hence the term 'relative backscatter'. For the RDI Ocean Surveyor 75 kHz system used for this data set, C = -164.26 and $P_{DBW} = 24.0$ dB (Mullison, 2017).

The conversion factor k_c was calculated as follows:

$$k_c = \frac{127.3}{(T_x + 273.16)}$$

The slant range R was calculated as follows:

$$R = \left(\frac{B + |P - CS|/2 + (N \cdot CS) + CS/4}{\cos \theta}\right) \left(\frac{c'}{c_x}\right)$$

where B is the blanking distance, P is the pulse length, CS is the cell size, N is the number of cells, θ is the beam angle, c' is the mean sound speed between the transducer depth and the depth of the cell, and c_x is the sound speed at the transducer.

The absorption coefficient of water was calculated as the sum of contributions from boric acid, magnesium sulfate and pure water, following Francois and Garrison (1982). The calculation requires fields of temperature, salinity and sound speed on the ADCP cell grid. The temperature and salinity fields were extracted from the seasonal means over the 2015-2022 period on a 1°x1° grid provided by the World Ocean Atlas 2023 Data (Locarnini et al., 2023 and Reagan et al., 2023). The gridded data was interpolated on the ADCP grid along the cruise track. From the interpolated fields, sound velocity was calculated.

3.2.7 Quality control and flags

The flagging scheme follows the SeaDataNet vocabulary for measured qualifier flags (SeaDataNet, 2022; see Figure 2). The central criterion for the quality assessment is the evaluation of the ensemble percent-good value. It is a measure of the number of valid measurements contained in an ensemble-mean. For the here described data set, cells with an ensemble percent-good value below 25% were flagged as 'bad data'.

3.2.8 Meta data standards

The final data product of processed and quality-controlled shipboard ADCP velocity measurements is created as netCDF file (Unidata, 2021).

Meta data standards follow Climate and Forecast conventions (CF-1.6, v19), OceanSites Manual-1.3, EGO glider user manual 1.3, and Attribute Convention for Data Discovery 1.3 (ACDD-1.3). Additionally, all relevant meta information

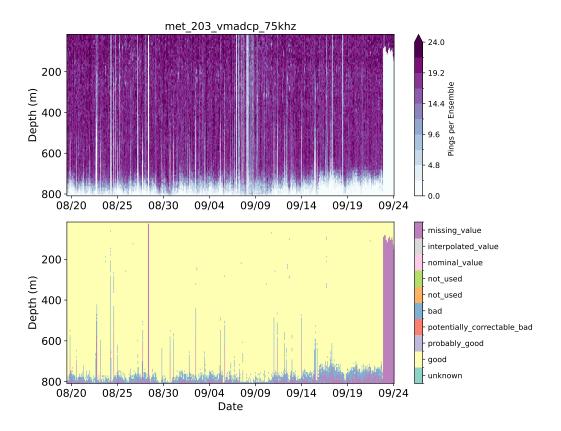


Figure 2: Top: Number of pings used for an ensemble for each cell. Bottom: Distribution of quality flags.

about the deployment, ADCP system, data acquisition and processing parameters are stored as global attributes. The standard name vocabulary to identify data variables is from CF-1.6, v19. Ensemble-mean time series of horizontal velocity profiles and corresponding quality flags are stored as 2-D arrays, as is the ensemble-mean time series of cleaned echo intensity profiles. Time, position, and cell depth information are saved as 1-D vectors.

ADCP data coverage

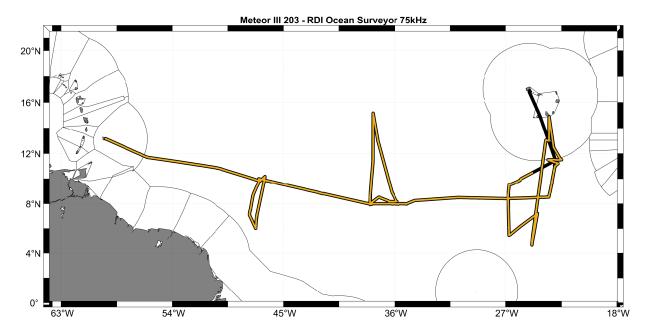


Figure 3: ADCP measurements (orange dots as indicated) along cruise track (black line). EEZs are marked by grey lines.

References

Firing, E and Hummon, J (2010). Ship-mounted acoustic Doppler current profilers in The GO-SHIP Repeat Manual: A Collection of Expert Reports and Guidelines. Available online at: http://www.go-ship.org/HydroMan.html

Francois, R and Garrison, G (1982). Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption. Journal of the Acoustical Society of America, 72(6), 1879-1890.

Joyce, T M (1989). On in situ "Calibration" of shipboard ADCPs. J. Atmos. Oceanic Technol. 6, 169-172. doi: 10.1175/1520-0426(1989)006%3C0169:OISOSA%3E2.0.CO;2

Kopte R, Becker M, Fischer T, Brandt P, Krahmann G, Betz M, Faber C, Winter C, Karstensen J and Wiemer G (2024). FAIR ADCP data with OS-ADCP: a workflow to process ocean current data from vessel-mounted ADCPs. Front. Mar. Sci. 11:1425086. doi: 10.3389/fmars.2024.1425086

Kopte, R, Betz. M and Anselm, N (2022). SOP 75kHz ADCP aboard of RV Meteor III. Zenodo. https://doi.org/10.5281/zenodo.7022755

Locarnini R A, Mishonov A V, Baranova O K, Reagan J R, Boyer T P, Seidov D, Wang Z, Garcia H E, Bouchard C, Cross S L, Paver C R and Dukhovskoy D (2023). World Ocean Atlas 2023, Volume 1: Temperature. A Mishonov Technical Ed. NOAA Atlas NESDIS 89, doi.org/10.25923/54bh-1613

Mullison (2017). Bachscatter Estimation Using Broadband Acoustic Doppler Current Profilers - Updated. Conference paper at 'ASCE Hydraulic Measurements & Experimental Methods Conference', Durham, NH, July 9-12, 2017.

Reagan J R, Seidov D, Wang Z, Dukhovskoy D, Boyer T P, Locarnini R A, Baranova O K, Mishonov A V, Garcia H E, Bouchard C, Cross S L, and Paver C R (2023). World Ocean Atlas 2023, Volume 2: Salinity. A Mishonov, Technical Editor, NOAA Atlas NESDIS 90, doi.org/10.25923/70qt-9574

MET_203_VMADCP_75KHZ met_203_vmadcp_75khz.nc

SeaDataNet (2022). SeaDataNet Measured Qualifier Flags. Available online at: https://vocab.nerc.ac.uk/collection/L20/current/

Unidata (2021). Network Common Data Format (netCDF) version 1.5.8 [software]. Boulder, CO: UCAR/Unidata Program Center. doi: 10.5065/D6H70CW6

List of ENX files used

m203os75002_000000

m203os75002_000001

m203os75002_000002

m203os75002_000003

m203os75002_000004

m203os75002_000005

m203os75002_000006

m203os75002_000007

m203os75002_000008

m203os75002_000009

m203os75002_000010

m203os75002_000011

m203os75002_000012

m203os75002_000013 m203os75002_000014

m203os75002_000015

m203os75002_000016

m203os75002_000017

m203os75002_000018

m203os75002_000019

m203os75002_000020

m203os75002_000021 m203os75002_000022

m203os75002_000023

m203os75002_000024

m203os75002_000025

m203os75002_000026

m203os75002_000027

m203os75002_000028

m203os75002_000029

m203os75002_000030

m203os75002_000031

m203os75002_000032

m203os75002_000033

m203os75002_000034 m203os75002_000035

m203os75002_000036

m203os75002_000037

m203os75002_000038

m203os75002_000039

m203os75002_000040

m203os75002_000041 m203os75002_000042

m203os75002_000043

m203os75002_000044

m203os75002_000045 m203os75002_000046

m203os75002_000047

m203os75002_000048

m203os75002_000049 m203os75002_000050 m203os75002_000051 m203os75002_000052 m203os75002_000053 m203os75002_000054 m203os75002_000055 m203os75002_000056 m203os75002_000057 m203os75002_000058 m203os75002_000059 m203os75002_000060 m203os75002_000061 m203os75002 000062 m203os75002_000063 m203os75002_000064 m203os75002_000065 m203os75002_000066 m203os75002_000067 m203os75002_000068 m203os75002_000069 m203os75002_000070 m203os75002_000071 m203os75002_000072 m203os75002_000073 m203os75002_000074 m203os75002_000075 m203os75002_000076 m203os75002_000077 m203os75002_000078 m203os75002 000079 m203os75002_000080 m203os75002_000081 m203os75002_000082 m203os75002_000083 m203os75002_000084 m203os75002_000085 m203os75002_000086 m203os75002_000087 m203os75002_000088 m203os75002_000089 m203os75002_000090 m203os75002_000091 m203os75002_000092 m203os75002_000093

m203os75002_000094 m203os75002_000095 m203os75002_000096 m203os75002_000097 m203os75002_000098

m203os75002_000099 m203os75002_000100 m203os75002_000101 m203os75002_000102 m203os75002_000103 m203os75002_000104 m203os75002_000105 m203os75002_000106 m203os75002_000107 m203os75002_000108 m203os75002_000109 m203os75002_000110 m203os75002_000111 m203os75002 000112 m203os75002_000113 m203os75002_000114 m203os75002_000115 m203os75002_000116 m203os75002_000117 m203os75002_000118 m203os75002_000119 m203os75002_000120 m203os75002_000121 m203os75002_000122 m203os75002_000123 m203os75002_000124 m203os75002_000125 m203os75002_000126 m203os75002_000127 m203os75002_000128 m203os75002 000129 m203os75002_000130 m203os75002_000131 m203os75002_000132 m203os75002_000133 m203os75002_000134 m203os75002_000135 m203os75002_000136 m203os75002_000137 m203os75002_000138 m203os75002_000139 m203os75002_000140 m203os75002_000141 m203os75002_000142 m203os75002_000143 m203os75002_000144

m203os75002_000145 m203os75002_000146 m203os75002_000147 m203os75002_000148

m203os75002_000149 m203os75002_000150 m203os75002_000151 m203os75002_000152 m203os75002_000153 m203os75002_000154 m203os75002_000155 m203os75002_000156 m203os75002_000157 m203os75002_000158 m203os75002_000159 m203os75002_000160 m203os75002_000161 m203os75002 000162 m203os75002_000163 m203os75002_000164 m203os75002_000165 m203os75002_000166 m203os75002_000167 m203os75002_000168 m203os75002_000169 m203os75002_000170 m203os75002_000171 m203os75002_000172 m203os75002_000173 m203os75002_000174 m203os75002_000175 m203os75002_000176 m203os75002_000177 m203os75002_000178 m203os75002 000179 m203os75002_000180 m203os75002_000181 m203os75002_000182 m203os75002_000183 m203os75002_000184 m203os75002_000185 m203os75002_000186 m203os75002_000187 m203os75002_000188 m203os75002_000189 m203os75002_000190 m203os75002_000191 m203os75002_000192

m203os75002_000193 m203os75002_000194 m203os75002_000195 m203os75002_000196 m203os75002_000197 m203os75002_000198

m203os75002_000199 m203os75002_000200 m203os75002_000201 m203os75002_000202 m203os75002_000203 m203os75002_000204 m203os75002_000205 m203os75002_000206 m203os75002_000207 m203os75002_000208 m203os75002_000209 m203os75002_000210 m203os75002_000211 m203os75002 000212 m203os75002_000213 m203os75002_000214 m203os75002_000215 m203os75002_000216 m203os75002_000217 m203os75002_000218 m203os75002_000219 m203os75002_000220 m203os75002_000221 m203os75002_000222 m203os75002_000223 m203os75002_000224 m203os75002_000225 m203os75002_000226 m203os75002_000227 m203os75002_000228 m203os75002 000229 m203os75002_000230 m203os75002_000231 m203os75002_000232 m203os75002_000233 m203os75002_000234 m203os75002_000235 m203os75002_000236 m203os75002_000237 m203os75002_000238 m203os75002_000239 m203os75002_000240 m203os75002_000241 m203os75002_000242 m203os75002_000243

m203os75002_000244 m203os75002_000245 m203os75002_000246 m203os75002_000247 m203os75002_000248

m203os75002_000249 m203os75002_000250 m203os75002_000251 m203os75002_000252 m203os75002_000253 m203os75002_000254